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The principle of feadbadk control is used in a
wide variety of physicd and engineaing problems. For
example, it can be gplied in a straightforward way to
tune the oscill ation phase of a harmonic oscill ator in order
to achieve adesired synchronization. An intriguing and
fundamental question is whether continuous feedbad< can
be used to control quantum systems; for instance, if it is
possble or not to tune the phase of quantum (Rabi)
oscill ations of atwo-level system (qubit).

At first sight the quantum feedbadk seems to be
impaossble because acording to the “orthodax” collapse
postulate [1] the quantum state is abruptly destroyed by
the ad¢ of measurement. However, in a typicd solid-state
redizaion the measurement is not instantaneous but
rather a @ntinuous process (becaise of weg coupling
and finite noise of a detector), hence the llapse
postulate is not diredly applicable. The posshility of
continuous feedbadk control of an individual qubit has
been recently shown theoretically [2] using the Bayesian
formalism [3,4] developed to describe the evolution of an
individual quantum system. (The cnventional ensemble-
averaged formalism [5] cannot be used to describe
guantum feeadbad.) The goal of the present work is a
more detail ed study of the mntinuous feadbadk control of
guantum oscill ations of a qubit state.

As a particular example we consider a qubit
based on the double-quantum-dot occupied by a single
eledron. The qubit state (eledron paosition in either first
or seoond dot) is continuousdly measured by a weakly
coupled Quantum Point Contact (QPC) neaby, so that the
noisy QPC current I(t) contains the information o the
gubit evolution. Even though detedor signal I(t) does not
have one-to-one rresponcence with the diagonal
elements of the qubit density matrix p;(t) (this would
contradict uncertainty principle), the evolution of p can be
monitored exadly plugging I(t) into Bayesian equations.
Then the deviation from the desired qubit evolution can
be montinuously compensated by the feedbadk loop, which
controls the energy asymmetry € and/or the tunneling
strength H of the qubit [the qubit Hamiltonian is
Hos=(€/2)(c,"c1— C;'cp)+H(cy co + ¢, 'cy)].

We have analyzed the operation of such quantum
feadbadk loop using Monte-Carlo simulation of the
measurement process[2]. Figure 1 shows the numericdly
cdculated correlation function K(t)=<I(t)I(t+1)> of the
detedor current for three values of the dimensionless
feadbad strength: F=0.0, 0.03, and 0.3. In this example
the feadbad signal controls the barrier height between
guantum dots (we assume €=0) using the linea relation
AH/H=F A¢, where A is the phase difference between
acdua and desired quantum oscill ations of a qubit state.
The normalization of K(1) is chosen in a way that the
“perfed” signal I(t) = I+ (Al/2) cosQt would correspond
to oscillations with amplitude ejual to unity (here
Al=l—l, is the difference between average currents
corresponding to qubit states |1> and |2>).

In absence of the feedbadk control, F=0, the
correlation function decays in time eponentialy
acording to the qubit dephasing rate I'= (Al)%4S, where S

8K (1)/ @)

isthe spedral density of the QPC shot noise. The Q-fador
of oscillations is determined by the upling
a=ha(Al)*/8SH between the double-dot and QPC (Q=a'=8
in Fig. 1). As expeded, the feedbad synchronizes the
guantum oscill ations leading to nonvanishing amplitude
of K,(1) a arbitrary long 1. This asymptotic amplitude
depends on the feedbadk strength and becomes close to 1
in units of (A1)%8 (perfed oscill ations) at F>>a (see Fig.
1). Analyticd results obtained in this regime ae in good
agreement with numericd cdculations. The nonvanishing
oscill ations of K (1) leal to a &-like pe& in the spedral
density of the detedor current I(t) at the desired frequency
Q [which is chosen coinciding with (4H*+€%)"?/n] and
also change the pe-like “pedestal” in comparison with
the cae without feadbad [6]. It is interesting to notice
that the value of K;(+0) which in absence of feedbad is
twicelarger than for perfed oscill ations (seediscusson of
this nonclassicd effed in [6]), does not change when the
feadbadk control is applied.

We have dso studied the case of moderately
large wupling, a~1, and confirmed the presence of long
range order as reveded by the nonvanishing oscillations
of K(1). The dfed of extra dephasing due to environment
and the suppresson d this dephasing by using quantum
feadlbadk have been aso studied quantitatively by
analyzing correlation functions of the detedor current and
the qubit density matrix.
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Fig. 1. Correlation function K(t) of the QPC current
I(t) in absence of quantum feadbad (solid line) and for
feadbadk strength F=0.03 (dotted line) and 0.3 (dashed
line). The feadbadk loop maintains quantum oscill ations
of the qubit state with frequency Q=(4H>+£?)"?/h.



