Fabrication of three-dimensional photonic crystals by holographic lithography
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1.Introduction

Recently, photonic crystals have been given
considerable attention because it is expected that
they might give a significant breakthrough in many
photonic applications. However, it is rather hard
to fabricate the three-dimensional photonic crystal.
Many fabrication methods have been proposed and
studied. In these fabrication methods, we take
notice of the holographic interference method as
an elegant way to fabricate dielectric photonic
crystalsV.

In this paper we describe the relations between
incident directions of four interference waves and
the resultant interference fringe in the holographic
interference method based on the concept of crystal
lattice vector and reciprocal lattice vector in the
solid state physics.

2.Theoretical analysis

Light intensity distribution for four-wave
interference is given by extending the two-wave
interference equati on? as,

1= 3 SUnUncS{(Kn- Ko -1} (1)
m=0n=0

where U, and U,, are the amplitudes of the incident
waves, K, and K, are their wave number vectors
and r is the position vector that represents
observation point, that is, interference point. When
a point r satisfies the following three equations, the
interference fringe intensity becomes maximum at
the point.

(Ki—Ko) OO0 On |, for i=103, (2

where |; is an integer. The sum of three equationsin
Eq.(2) iswritten as,

(AKp+AKxp+AKg) Or=2nL, (3)
where
AKio=Ki— Ko for i=10 3, 4

and

L=1;+1,+I3, )

Here we consider the crystal lattice vector p and
reciprocal lattice vector G. They are defined
respectively as®,

p =Ma+ nb+ pc, @)

G=hA+kB+IC, (6)

wherem, n, p, h, kand | areintegersand a, b and ¢
are the primitive translation vectors of the crystal
lattice and A, B and C are the primitive translation
vectors of the reciprocal lattice. The primitive
translation vectors of the crystal lattice and of the
reciprocal lattice are connected as,

bxc cxa bxa

A=2x ,B=2n ,C=2n .
alibxc allbxc alibxc
(8)

The inner product between G and p becomes from
Eq.(8) as,

GOp=2nL', 9)

where L' = hm+kn+lp, that is, L' is an integer.

To compare the Eq.(3) and Eq.(9), we assume
that the sum of three equations AKjig+ AKyo+ A
Kz in EQ.(3) agree with the reciproca lattice
vector G'. Then the vectors AKjo (i =1 3) can be
expressed by using a linear combination of the
proper primitive translation vectors A, B and C in
the reciprocal lattice space as,

AKio=h A +kB +1;Cc fori=103, (10)
where h;, ki and |; are integers. When three

eguations in Eqg.(10) are substituted for Eq.(3), then
we get

(W A+ K B+ ' C)000 Ox L, (11)
where h'=hi+ho+hs, K'=kj+kot+ks and ['=11+1o+ 3.

Further, we can rewrite Eq.(11) by using a vector G'
aS!



GOr=2rnL, (12)

where G'=h'A+k'B+I'C. Eq.(12) is equivalent to
Eq.(9). This means that position vector r
corresponds to crystal lattice vector p if the
vector G' is corresponds to reciprocal lattice vector
G. As is obvious from this discussion, if we
determine incident angles and directions of
interference beams so that the AKiy, AK,, and
AK 3o satisfy the reciprocal lattice condition for the
desired crystal, that is, EQ.(10), the interference
fringe intensity becomes maximum at the
corresponding crystal lattice point. As a result, the
desired photonic crystal structure can be fabricated
by recording the interference fringe in the
photosensitive materials such as UV curing resin.

3.Numerical results
To verify the above theory, it is applied for the
face-centered cubic (f.c.c.) lattice. As the simplest
example, the following values were chosen for
Eq.(10).
AKyp=A thatis, p=1k;=0,1,=0;
A K= B, thatis, h,=0,k.=1,1,=0; (13)
AKg=C, thatis, h3=0,k3=0,13=1,

where A, B and C are the primitive translation
vectors of the simplest f.c.c as,

A=2n/d[ -1, 1, 1],
B=2r/d[ 1,-1, 1], (14)
C=2z/d[ 1, 1, -1].
We can calculate K; (i =0 3) from Eqg.(4) and
Eq.(13) as,
Ko=2r /d[ —3/2,-3/2,-3/2],
Ki=2n/d[ -52,-12,-12],
Kpo=2r /d[ —1/2,-5/2,-1/2 ],
Ks=2r /d[ -1/2,-12,-5/2],

(15)

where d is the lattice constant and calculated as
d=27Y2 A /2. For the recording wavelength of
441.6nm (Hd-Cd laser), the lattice constant d is
1.1473 ym. Figure 1 shows the appearance of
four wave vectors of Eq.(15). The three vectors Ky,
K, and K3 are symmetrically arranged around the
central vector K,. Figure 2 shows cross sectional
views of the light intensity distribution on each
plane, and Fig.3 shows three-dimensional view of

Fig.1 The appearance of four wave vectors of
Eq.(15) that create f.c.c inference fringe pattern.
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Fig.2 Light intensity distribution on each
cross-section. (a) x-y plan, (b) y-z plan, (c) z-x plan.
The length of each sideis 2.8um.

Fig.3 Three-dimensional display of the light
intensity distribution for the arrangement shown in
Fig.1. Only parts that have intensity greater than
50% of the maximum value are displayed. The
length of each edge is 2.8um.



the light intensity. In Fig.3, only parts that have
intensity greater than the predetermined value is
displayed with considering the recording process
that may have arecording threshold value.

Next we can choose the other pattern to create
the simplest f.c.c interference pattern,

A K13: Ay
AK02= B, (16)
AKn=C,

where A, B and C are the same values as those in

Eqg.(14). We can determine the wave vectors in
the same way as the previous discussion as,
Ko=2r/d[ 1, 0O, 12],
=2n/d[ -1, 0, L12],
K1 [ ] (17)
K,=2r/d[ 0, 1, -1/2],

Ks=2n/d[ O, -1, -12],

where d is the lattice constant and calculated as
d=5"2 A\ /2 (0.494 p m for wavelength A
441.6nm). Figure 4 shows the appearance of four
wave vectors of EQ.(17). The two beams are
incident from the top and the rest two beams are
incident from the bottom, and these are
symmetrically arranged each other. Figure 5 shows
three-dimensional view of the light intensity.

The other crystal structure can be produced by
this method, for example the body-centered cubic
(b.c.c.) lattice. We choose the following values for
Eq.(20).

AKipo=A, thatis, hy=1,k;=0,1,=0;
AKy=B, thatis, h,=0,k,=1,1,=0; (18)
A Kg=C, thatis, h3=0,k;=0,15=1,
where A, B and C are the primitive translation
vectors of the simplest b.c.c. as,
A=2n/d[ 1, 1, 0],
B=2r/d[ O, 1, 1], (29
C=2z/d[ 1, 0, 1].

We can calculate K; (i =0 3) from Eqg.(4) and

Eq.(18) as,
Ko=2r /d[ -1/2, -1/2, -1/2],
Ki=2n/d[ 1/2, 1/2, -12], (20)
Kpo=2r/d[ -1/2, 1/2, 1/2],
Ks=2r /d[ 12, -12, 1/2],

where d is the lattice constant and calculated as

d=3"2)/2 (0.382pm for wavelength A 441.6n
). Figure 6 shows the appearance of four wave
vectors of EQ.(20). The four beams are

symmetrically arranged each other similarly as
Fig.4, but the incident angles are different. Figure.7
shows three-dimensional view of the light intensity.
From these results it is verified that the desired
crystal structure in the solid state physics can be
fabricated according to the theory developed above.

Fig.4 The appearance of four wave vectors of
Eq.(17) that create f.c.c. inference fringe pattern.
The two beams are incident from the top and the
rest two beams are incident from the bottom, and
these are symmetrically arranged each other.

light

Fig.5 Three-dimensional display of the
intensity distribution for the arrangement shown in
Fig.4. Only parts that have intensity greater than
the 50% of the maximum value are displayed. The
length of each edge is 1.4 pym. Compared with
Fig.3, the shape of cell that construct this f.c.c
lattice is closer to a sphere.



Fig.6 The appearance of four wave vectors of
Eqg.(20) that create b.c.c. inference fringe pattern.
The four beams are symmetrically arranged each
other similarly as Fig.4, but the incident angles are
different.

Fig.7 Three-dimensional display of

the light
intensity distribution for the arrangement shown in
Fig.6. Only parts that have intensity greater than
the 50%o0f the maximum value are displayed. The
length of each edgeis 1.4 ym.

4.Conclusion

As an example, four-wave interference has been
theoretically and numerically analyzed. The derived
theory, however, gives a general rule to determine
the incident condition for interference beams in
fabricating photonic crystals by holographic
lithography method.
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