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1 Introduction

For many integrated photonic devices, it is important to accurately calculate both the transmitted and
reflected wave field. This is certainly so for distributed-feedback lasers, since they incorporate reflections
from a grating distributed throughout the active region. For these problems, bidirectional propagation
methods are required. As an alternative to iterative bidirectional propagation methods which propagate the
wave field back and forth many times, non-iterative methods [1] have been developed based on operators
and their rational approximations.

Consider a planar waveguide with the main propagation direction in z, and assume that the waveguide
is z-invariant for z < 0 and z > L. In the interval [0, L], the waveguide is composed of m distinct z-invariant
sections zj−1 < z < zj for j = 1, 2, ...,m, where z0 = 0 and zm = L. For TE polarized light, the governing
equation is

uzz + uxx + k2
0n

2(x, z)u = 0,

where the refractive index n is piecewise constant in z. That is, n(x, z) = nj(x) for zj−1 < z < zj and
j = 0, 1, 2, ...,m,m+1. Here we further assume that z−1 = −∞ and zm+1 = +∞. Non-iterative propagation
methods can be developed based on the following square root operators

Lj =
√
∂2
x + k2

0n
2
j (x) for j = 0, 1, 2, ...,m+ 1,

and the forward and backward propagation operators P±j = exp(∓i(zj − zj−1)Lj), for j = 1, 2, ...,m.
Rational approximations to the square root operator Lj can be obtained based on Lj = k0n∗

√
I +Xj for

Xj = [∂2
x + k2

0n
2
j (x)− k2

0n
2
∗]/(k

2
0n

2
∗), where I is the identity operator and n∗ is a reference refractive index.

The standard Padé approximation gives

Lj ≈ k0n∗

(
I +

p∑
k=1

a
(p)
k Xj

I + b
(p)
k Xj

)
= k0n∗

p∏
k=1

I + c
(p)
k Xj

I + b
(p)
k Xj

where a(p)
k , b(p)k and c(p)k are real constants. However, the evanescent modes (corresponding to eigenvalues of

Xj which are less than −1) are not correctly modeled. This has motivated the complex coefficient rational
approximations to the square root operator, such as the rotated branch-cut method in [2] and the modified
Padé method in [3].

The method developed in [1] calculates a 2×2 operator matrix G which maps the forward and backward
components of u at z = 0− to the forward and backward components of u at z = L+. The matrix G involves
the operators P±j and L−1

j Lj+1. Complex coefficient rational approximations are used in L−1
j Lj+1, but not
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in P±j . The choice of real Padé coefficients for Lj in P±j is essential for the stability of their method. If
the exact operators P±j are used, their method is actually unstable. Thus, in their method, the evanescent
modes are incorrectly treated as propagating modes in each z-invariant sections.

In this paper, we develop a non-iterative bidirectional propagation method based on the reflection and
transmission operators. Our method is truly stable and complex coefficient rational approximations are
used in the square root operators for both the transition and propagation steps. Our method also has an
important property for periodic waveguides. If the interval [0, L] involves M periods, then only log2M steps
are needed to complete the calculation.

2 A Stable Bidirectional Propagation Method

We first consider the case that the wave field is generated by an incident wave coming from z = −∞ and
assume that there is only an outgoing wave for z > L. In each z-invariant section, we can decompose the
wave field into forward (to z = +∞) and backward (to z = −∞) components, and they satisfy one-way
Helmholtz equations involving the square root operator. For zj−1 < z < zj , we have u = u+ + u− and

u+
z = −iLju+, u−z = iLju

−.

The reflection operator at z ∈ (zj−1, zj) maps the forward component to the backward component, i.e.,
R(z)u+(·, z) = u−(·, z). The transmission operator maps the forward component at z to the forward compo-
nent at z = L+, i.e., T (z)u+(·, z) = u+(·, L+). Taking the limit towards the discontinuities, we have R(zj−),
T (zj−), R(zj+) and T (zj+), for j = 0, 1, 2, ...,m.

Our problem is to calculate R(0−) and T (0−) from the given R(L+) = 0 and T (L+) = I, since only
outgoing waves are allowed for z > L. We need a “transition” formula that leads the operators from zj+
to zj−, and a “propagation” formula that moves the operators from zj− to zj−1+. These formulas are well
known and are given in the following algorithm:

For j = m,m− 1, ..., 0,
C = L−1

j Lj+1[I −R(zj+)][I +R(zj+)]−1

R(zj−) = (I + C)−1(I − C)
T (zj−) = T (zj+)[I +R(zj+)]−1[I +R(zj−)]
If j > 0, then
R(zj−1+) = P+

j R(zj−)P+
j

T (zj−1+) = T (zj−)P+
j

end
end

The operator P+
j has already been defined in Section 1.

This gives rise to a bidirectional propagation method. The operators R(0−) and T (0−) give the reflected
wave and the transmitted wave, respectively. The algorithm is non-iterative, since only one sweep in z (from
z = L+ to z = 0−) is needed. With further rational approximations to the square root operator and P+

j , this
approach can become useful for practical calculations. However, this is a sequential algorithm and m steps
are required, since we have to jump over each discontinuity and move through each z-invariant section in a
well defined sequence. In the next section, we describe a more efficient algorithm for periodic waveguides.

3 Period Doubling

In this section, we consider a waveguide with a periodic grating. We assume that there are only two distinct
refractive index profiles, n0(x) and n1(x). The discontinuities are located at

z0 = 0, z1 = l0, z2 = z1 + l1, z3 = z2 + l0, z4 = z3 + l1, ...., zm−1 = zm−2 + l0,



where m = 2M is an even integer. The refractive index profile in the interval (zj−1, zj) is nj(x) as before,
but

nj(x) =
{
n1(x) if j is odd,
n0(x) if j is even.

From z = 0 to z = zm−2 = (M−1)(l0 + l1), we have M−1 periods with the period l = l0 + l1. For z > zm−1,
the waveguide is z-invariant with n(x, z) = n0(x), but we add an additional point zm = zm−1 + l1 = Ml = L,
such that there are a total of M periods from z = 0 to z = zm. However, zm is not a point of discontinuity
of the refractive index.

For this problem, we have a pair of operators R(0−), T (0−) as in Section 3, for the scattering problem
related to incident waves coming from z = −∞. These two operators will now be denoted as R−M and T−M ,
although the transmission operator maps the incident wave at z = 0− to the outgoing wave at z = L− (not
z = L+). These operators satisfy

R−Mu
+(·, 0−) = u−(·, 0−), T−Mu

+(·, 0−) = u+(·, L−),

where L = zm. Similarly, for incident waves coming from z = +∞, we have a pair of operators such that

R+
Mu
−(·, L−) = u+(·, L−), T+

Mu
−(·, L−) = u−(·, 0−).

It has been established [4, 5] that these four operators for a waveguide with 2s periods can be easily deduced
from the corresponding four operators with s periods, where s is an integer. We have

R−2s = R−s + T+
s (I −R−s R+

s )−1R−s T
−
s

T−2s = T−s (I −R+
s R
−
s )−1T−s

R+
2s = R+

s + T−s (I −R+
s R
−
s )−1R+

s T
+
s

T+
2s = T+

s (I −R−s R+
s )−1T+

s .

Therefore, when M is an integer power of 2, we first calculate the four operators R±1 and T±1 based on the
procedures outlined in Section 2, then we use log2M period doubling steps (for s = 1, 2, 4, ...,M/2) based
on the above formulas. Compared with the sequential algorithm in Section 3, this method can significantly
speed up the calculation.

4 Numerical Implementation and Examples

When the transverse variable x is discretized, say by N points, the operator ∂2
x + k2

0n
2 is approximated by a

matrix, then all the reflection and transmission operators are reduced to N ×N matrices. In the following
example, we chose l0 = 0.0621 µm, l1 = 0.06125 µm. The refractive index takes the constant nco = 3.3 in
the core and ncl = 3.2 in the cladding. The profiles n0 and n1 correspond to sections with core width 0.5
µm and 0.1875 µm, respectively. Our problem is to calculate the transmitted and reflected waves for a given
incident wave which is chosen to be the fundamental (symmetric) propagating mode of the waveguide (for
z < 0 with a core width of 0.5 µm).

With a Perfectly Matched Layer[6], we discretize x from −1 µm to 1 µm with 512 points and a second
order finite difference method is used to approximate the transverse operator. Complex coefficient rational
approximations developed in [3] are used with p = 6, and the operator P+

j is further approximated with a
[2/2] Padé approximation to the exponential function. In Figure 1, the reflectivity and the total power are
shown with different wavelength of the incident wave. Our results are consistent with the calculation in [1].
These results are also compared with an exact method where the operators Lj and Pj are exactly evaluated.
No noticeable difference has been observed.
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Figure 1: Reflectivity (a) and total power (b) for a DFB structure with 256 periods.

5 Conclusion

A non-iterative bidirectional propagation method has been developed for waveguide problems using the
reflection and transmission operators. The method is stable, even when complex coefficient rational approx-
imations are used to approximate the square root operator (so as the evanescent modes are damped). The
method is further enhanced with a period doubling process for periodic waveguides, such as a DFB structure.
Numerical examples indicate that the method is highly accurate and quite efficient.
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