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Hybrid systems are heterogeneous dynamical systems characterized by
interacting continuous and discrete dynamics, and typically arise in the em-
bedded software control of physical processes. Such mathematical models
have proved fruitful in a great diversity of engineering applications, includ-
ing automated transportation, robotics, and automated manufacturing. The
design and synthesis of controllers is one of the most active areas in the field;
the recent papers [4, 8, 10] include surveys of a range of approaches. Methods
include the adaption of optimal control and game-theoretic techniques from
continuous systems, and supervisory control ideas from discrete events sys-
tems (DES). The other dominant trend within hybrid systems comes from
computer science. There, the focus is on extending computational models
and methods for the formal analysis and verification of computer hardware
and software to the setting of mixed discrete-continuous systems; see, for
example, [1, 2, 3]. Performance specifications are encoded as formulas of a
temporal or modal logic, or as an automaton formal language (as in DES the-
ory), and hybrid system models (notably, the hAybrid automaton model) are
formally represented as some form of transition system, or generalized au-
tomaton. The task is to give a formal proof or computation demonstrating
that a system satisfies given performance specifications. The principal meth-
ods are symbolic model checking, which consists of the direct computation of
the set of states in a model at which a modal or temporal logic formula is
satisfied, and the use of deductive proof systems for such logics, where one
seeks to give a formal deduction of a specification formula from a theory (set
of formulas) already known to be true of the system model. A comprehensive
tutorial and survey of various logics for hybrid systems is offered in [6].



The present work combines ideas from both control theory and computer
science to develop a logic-based approach to the design and synthesis of
hybrid control systems. The plant, or system to be controlled, consists of a
finite number of continuous systems & = F.(z) over a common state space
X C R”, indexed by symbols ¢ € C in a finite (discrete) control alphabet.
For example, the plant could arise from a single continuous control system
% = f(z,u) subject to a finite collection of continuous state feedback control
maps g. : X — U. The controller (or supervisor) exhibits discrete dynamics,
realized on a finite state space @), and includes an output mapping from @)
to the control alphabet C'. The controller must decide when to switch its
discrete state ¢ to another ¢’, and output a new control symbol ¢/, based on
its continuous measurement of the plant state x. This hybrid control loop is
illustrated in Figure 1.
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Figure 1: Basic hybrid control feedback loop

The controller transition relation « : () X X ~» () determines two sorts of
regions or subsets of the plant state space: regions Inv, C X in which the
controller grants permission to stay in discrete state ¢ and continue evolution
according to the equation & = Fpq)(z), where § : Q@ — C' is the controller
output function, and regions Grd, s C X in which the controller grants per-
mission to switch discrete state from ¢ to ¢', and begin evolution according
to & = Fp(g)(x). This switching control mechanism is illustrated in Figure 2.
The widely accepted hybrid automaton model encodes this form of switched
control, and can be seen as generating the closed-loop trajectories of such a
plant-controller feedback system. In work on hybrid automata, a staying re-
gion I'nv, is also known as the invariant region for controller state ¢ € (2, and



a switching region Grd, , is also known as the guard region for the discrete
transition (g, q’); we continue with this established notation. This hybrid
control configuration is an extension of the switching controller framework
of [4], and is closely related to the DES supervisory control framework of [8];
the latter relationship is developed in more detail in [6].

Figure 2: Controller designated regions of plant state space

We formulate and solve a quite general class of hybrid control problems.
The problem is framed as the task of constructing a controller for a given
plant, so that the resulting closed-loop hybrid automaton is guaranteed to
satisfy a given list of performance specifications. The types of qualitative
behavioural specifications we address go beyond the class of safety, invariance
and reachability properties, which are the sole or primary focus of much of
the current work on hybrid controller synthesis [4, 10]. Safety properties are
usually formulated as negative reachability assertions, of the form: no hybrid
trajectory starting in a given set Init will ever enter a set Bad, where Bad
is a proscribed set of plant states. In our target class of control problems,
we additionally address positive or active behavioural requirements. We deal
with a very general class of event sequence properties, of the form: all hybrid
trajectories must traverse in a prescribed order through the blocks of a given
finite partition {Ej}rex of the plant state space X, where the ordering is
given by a total transition relation next C K x K on the partition index
set K. This gives a general-purpose way of specifying the attainment of
local goals along the course of hybrid trajectories, and integrating the type of
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event sequence specifications examined in DES approaches to hybrid systems
[8, 7, 9]. We also address the two basic forms of liveness properties: that
all hybrid trajectories can be extended indefinitely, to make infinitely many
discrete changes of state, and that all hybrid trajectories be non-Zeno (so
not make infinitely many discrete switches in finite real time). Moreover, the
construction is designed so that we can prove correctness with a quantifiable
measure of robustness: every hybrid automaton within a class of bounded
variations of the nominal closed-loop model satisfies each in the list of the
specifications. The particular variation classes we consider can be interpreted
as sensor and actuator imprecision, and fall within a larger framework of
robustness concepts for hybrid automata proposed by Horn and Ramadge in
[7].

At the workshop, this work will be presented in two 20 minute talks, one
each by Davoren and Moor. In broad terms, the first will cover the setting-up
and formulation of the class of control problems, and the statement of the
main result, while the second will present the mathematical tools of modal
logic used in the synthesis algorithm, and our software implementation of the
algorithm using an approximated representation of state sets.

A full paper has been submitted for publication, and is available as a tech-
nical report [5] from the web address: http://arp.anu.edu.au/ davoren/
hybrid_control/hybrid_control.html. There are also links to some video
files of closed-loop simulations of solution controllers for example plant mod-
els and specifications generated by our prototype software implementation.
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