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One of the primary benefits of prognostic health management (PHM) is the ability to accurately 
assess whether a system can complete its intended mission.  The system may be an automobile 
and the intended mission a family vacation, or the system may be a high-performance jet aircraft 
and the mission military in nature.  Although the costs of unexpected system failure may differ, 
the general prognostic PHM system requirements are the same.  The PHM system must be 
capable of detecting precursors to component or system failure, classifying the nature of the 
developing condition and accurately predicting the remaining useful life of the component or 
system.  In addition, a comprehensive PHM system may also recommend changes in the current 
operating conditions to the operator that will prolong the life of the component or system or 
implement such life extending changes through the automatic control system.  The fundamental 
components of a PHM system are advanced sensors and data acquisition systems, signal 
processing and data fusion, system models, pattern recognition and classification, automated 
reasoning, and interface to human users and asset management systems.  The interests of system 
users (such as the power generation industry or the military) are driven by factors such as a need 
to decrease maintenance costs and improve operator safety.  PHM offers potential added value to 
the system and eventually the ability to charge customers for actual usage and the opportunity to 
approach zero-downtime operation.   
 
The Applied Research Laboratory (ARL) has assumed a role that includes expanding the 
knowledge base in the fundamental components of PHM systems and facilitating the cooperation 
of diverse members of the research, industrial supplier and user communities through the 
formation of consortia focused on particular prognostic health monitoring problems.  
Understanding the progression of faults in complex mechanical systems is one of the keys to 
reliable prognostic health management.  ARL has constructed a number of test facilities designed 
to facilitate the acquisition of transitional machinery failure data.  These include a mechanical 
diagnostics test bed, a lubrication systems test bench, a bearing test rig, an electrical generator 
test rig, a high-speed gearbox test rig, a torsional vibration test rig, and a battery test rig.  In 
addition, ARL has constructed portable data acquisition systems for the collection of data in 
these facilities and on various fielded systems, and software test beds for the development and 
evaluation of processing and data fusion algorithms.  This paper describes the facilities 
developed at the ARL and the contributions made to the field of prognostic machinery health 
management. 
           
This paper describes research activities at the Applied Research Laboratory in the area of condition-based 
maintenance.  It is a summary of previous work by the authors, co-authors and other researchers. 
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Introduction 
 

Maintenance is widely considered to be the largest controllable cost in industry. In an era 
of increased global competition, producers continually strive to minimize costs, maintain or 
improve product quality, and increase their organization’s market responsiveness. To that end, 
companies are seeking ways to optimize their maintenance practices by eliminating the expense 
of excessive maintenance, while concurrently reducing the likelihood of machinery failures and 
costly downtime. These seemingly contradictory goals have spawned a maintenance revolution. 
 

In the past decade, maintenance practices have evolved as a result of several 
technological advancements.  No longer must companies choose between periodic maintenance 
(e.g., changing bearings after X hours of operation) and run-to-failure operation (e.g., replacing 
bearings after a failure occurs and repairing the resulting damage). A wide range of maintenance 
practices has emerged, with Condition-Based Maintenance (CBM) representing one of the most 
promising philosophies. 
 

The objective of Condition-Based Maintenance is to accurately assess the current state of 
machinery within its operational environments and use that information to schedule maintenance 
activities and predict systems' remaining useful lives. This enables organizations to perform 
maintenance only when needed—to prevent operational deficiencies or failures—essentially 
eliminating costly periodic maintenance and greatly reducing the likelihood of machinery 
failures.  Prognostic Health Management uses Condition Based Maintenance to reduce 
maintenance costs and eliminate periodic maintenance and uses the health prognosis for the 
system in system planning and logistics. 
 

 

BENEFITS OF CONDITION-BASED MAINTENANCE 
 
Military 
• Increased operational availability 
• Reduced operating and maintenance (O&M) costs 
• Increased readiness 
• Improved safety 
 
Industrial 
• Improved product quality 
• Fewer product repairs/returns 
• Increased productivity via minimal downtime 
• Reduced product costs and increased global competitiveness 
• CBM as a product feature (i.e., products with built-in CBM systems) 
 
Overall 
• More efficient operations via better-informed decisions 
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CBM uses sensor systems to diagnose emerging equipment problems and to predict how 
long equipment can effectively serve its operational purpose. The sensors collect and evaluate 
real-time data using signal detection algorithms. The classification algorithms correlate the 
unique signals to their causes—for example, vibrations created by a developing fault. The system 
alerts maintenance personnel to the problem, enabling maintenance activities to be scheduled and 
performed before operational effectiveness is compromised.  
 

The key to effectively implementing CBM is the ability to detect, classify, and predict the 
evolution of a failure mechanism with sufficient robustness—and at a low enough cost—to use 
that information as a basis to plan maintenance for mission- or safety-critical systems.  “Mission 
critical” refers to those activities, which if interrupted, would prohibit the organization from 
meeting its primary objectives (e.g., completion of a military mission). “Safety critical” functions 
must remain operational to ensure the safety of humans (e.g., the safe transport of airline 
passengers). These concepts apply to both military and industrial endeavors. 
 
A CBM system must be capable of: 

1. Detecting the start of a failure evolution 
2. Classifying the failure evolution 
3. Predicting remaining useful life with a high degree of certainty 
4. Recommending a remedial action to the operator 
5. Taking the indicated action through the control system 
6. Aiding the technician in making the repair 
7. Providing feedback for the design process 

 
These activities represent a closed-loop process with several levels of feedback, which 

differentiates CBM from preventive or time-directed maintenance. In a preventive maintenance 
system, time between overhaul (TBO) is set at design, based on reliability predictions, failure 
mode effects and criticality analyses (FMECA), and experience with like machines. Although 
feedback is possible to reduce or extend the TBO, the feedback process is lengthy and costly. 
This CBM closed-loop process is shown in Figure 1, with the steps in the process numbered to 
correspond to the activities listed above. 

 
In the Beginning 
 

In the early 1990s, CBM was little more than a concept. Both industry and the military 
demonstrated an interest. The evolution from primarily time-based maintenance to primarily 
condition-based maintenance will be a gradual change, as shown in Figure 2. A significant 
amount of research and technological development was needed to develop the capabilities 
necessary for CBM. Industry technology developers and users, government research and users, 
and university researchers, such as the Applied Research Laboratory (ARL), launched 
unprecedented collaborative efforts to design and develop the hardware, software, and services 
necessary for CBM solutions. ARL’s Systems and Operations Automation Division has focused 
on this task, collaborating with a wide array of distinguished organizations in the areas of: 
 
• Aircraft manufacturing 
• Turbine manufacturing 
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• Ship manufacturing 
• University-based research 
• Power production (electric/nuclear) 
• Sensors and control 
• Human-interface technologies 
• Mechanical and power systems 
• Construction and land vehicle production 
• Data and information technology 
 

 
 ARL launched its CBM research efforts in the mid-1990s, recognizing that existing 
mechanical diagnostic equipment would be insufficient for prognostics purposes. Although that 
technology—designed to identify individual events or trends in the output of sensors mounted on 
components, subsystems, or systems—could indicate that a failure condition was developing, it 
could not provide reliable predictions of the remaining useful life. Such systems were limited to 
simply comparing the output of individual sensors against a priori thresholds to establish a 
measure of the system’s health. Furthermore, the technology prevented implementers from 
taking advantage of synergy among sensors (i.e., making a multi-dimensional determination of 
health based on feedback from multiple sensors). 
 
 The general goal of “consistent” CBM research is to develop the physical understanding, 
sensors, signal processing methods, predictive models, classification, and reasoning to allow the 
development of accurate, reliable CBM systems. Figure 3 provides a high-level view of the 
elements and flow of the CBM process. ARL’s goal has been the development of a conceptual 
framework, via a process model, which addresses the signal processing, data fusion, and decision 
processes for CBM. In particular, ARL seeks to determine the functional techniques, knowledge 
representation, and approximate reasoning formulations that are applicable to CBM for 
mechanical systems. Results of this research include a process model, a taxonomy of algorithms, 
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and alternative architectures for CBM processing. In addition, ARL is establishing a criterion 
and metrics for CBM processing algorithm selection. 
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The Goal: Development of Machinery Prognostics 
 
 The primary research focus of ARL’s Condition-Based Maintenance research program is 
the development of a prognostic capability—in other words, the ability to accurately and reliably 
predicts the remaining useful life of machinery in service. ARL’s research is based on the Failure 
Trajectory Hypothesis, which contends that failures in mechanical systems follow a particular 
failure trajectory. Furthermore, this trajectory can be predicted within a multidimensional state-
space sufficiently early to be useful to the operator and the maintainer.  
 
 A number of technologies are required to achieve the objective of prognosis. They 
include methods for understanding the material properties related to failure and failure 
propagation, sensors and control, monitoring and interrogation techniques and equipment, signal 
processing, model-based prediction techniques, and decision support methodologies. These are 
shown pictorially in Figure 4. 
 

 
 The top portion of Figure 4 shows the activities involved in monitoring the system’s 
operation; the bottom portion reflects the analysis of collected data to develop models for 
predicting remaining useful life. Monitoring includes passive and active approaches. In active 
techniques, a known signal is introduced into the structure and the response of the structure is 
monitored. In the passive approach, the self-generated noise is monitored.  
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 The analysis portion must consider all aspects of the physical system—including 
mechanical components such as gears, bearings, and shafts. The dynamics of those components 
must be taken into account. Analysis must also include an understanding of the mechanisms by 
which failure can initiate and evolve, the unique “signature” that a particular failure generates, 
and how the signature maps to something observable. Finally, to accurately predict life, the 
operational environment in which the system will operate must be projected. 
 
ARL’s Role 
 
 ARL recognized that, in addition to developing the knowledge base required to advance 
CBM technologies, researchers would have to engage in nonvested testing and evaluation. 
Testing would be needed in the form of a number of realistic scale test stands that effectively 
represent the real environment and bridge the chasm between typical university scale test 
facilities and the real world. Other requirements include: (1) evaluation metrics and procedures 
to ensure that all evaluations are on an even footing, (2) sufficient knowledge and experience to 
ensure credibility of findings, and (3) an evaluation data set that is the equivalent of a “primary 
standard.”  ARL has taken a leading role in developing these capabilities, creating innovative 
research tools, applying those tools to specific research efforts, and sharing our data and findings 
with the CBM community. ARL continues to provide CBM solutions and to develop and 
demonstrate prototypes of emerging techniques that will ultimately be commercialized. 
 
Development of Innovative Research Tools 
 
 ARL has developed several significant test beds and software tools to support CBM 
research. The most prominent of these are described in the following paragraphs. 
 
Mechanical Diagnostic Test Bed (MDTB) - ARL developed the MDTB, shown in Figure 5, to 
determine precursors to failure for rotating components (e.g., gearboxes) and other components, 
such as bearings. Components can be run to failure on the test bed, allowing researchers to 
collect data on temperature, vibration, and acoustic emission and analyze the findings using 
signal processing algorithms. This facility has been used to support several ARL CBM research 
programs. The resulting transitional failure data sets, which characterize fault inception and 
progression, are available for testing in the CBM community. ARL is currently building a Diesel 
Enhanced MDTB that can use either a diesel engine or a motor drive to explore 
seeded/transitional faults in closely coupled reciprocating sources and rotary drive systems. 
 
Lubrication System Test Bench - This test bench reproduces the salient aspects of gas turbine 
engine lubrication systems and can be used to develop a validated, model-based diagnostics 
approach for many fault types. The test bench can simulate or produce lubricant degradation, 
contamination, internally or externally generated debris, flow blockage, and leakage—all 
important failure effects.  A picture of the test bench is shown in Figure 6. 
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Figure 5  Mechanical Diagnostics Test Bed. 

 

Bearing Prognostics Test Rig - This test rig enables ARL to collect bearing transition-to-failure 
data to support development of bearing diagnostic and prognostic algorithms.   
 
Electrical Generator Rig - This rig enables seeded and transitional testing for development of 
algorithms pertaining to bearing, diode and winding faults.  Windings are brought out to a patch 
panel via electrical slip rings to facilitate the simulation of turn-to-turn short circuits and 
insulation failures.  Diode faults can also be inserted into the electrical system.  Figure 7 shows a 
photograph of the electrical generator test rig. 
 
High-Speed Gearbox Rig - Currently under construction, this rig will simulate operation speeds 
(14,000 RPM input) for use in determining accessory gearbox health for gas turbine engines. 
 
Torsional Vibration Test Rig - The Torsional Vibration Test Rig supports ARL’s research into 
torsional vibration and its effectiveness in detecting and diagnosing turbine blade and shaft 
cracking.  Figure 9 shows the torsional vibration test rig. 
 

Figure 6  Lubrication System Test 
Bench. 
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Battery Test Bench - This test bench has been used by ARL researchers to develop a more 
efficient, model-based approach for (1) accurately assessing the condition (i.e., state of charge) 
and capacity (i.e., amp-hour) of primary batteries and (2) predicting the remaining useful life 
(i.e., number of cycles remaining) of secondary batteries. 
 

 

 

Figure 7  Electrical Generator Rig. 

Figure 8  Battery Test Bench. 

Figure 9  Torsional Vibration Test 
Rig. 
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Data Fusion Workbench - The Data Fusion Workbench combines data from multiple sensors 
and characterizes the state of electromechanical systems. The workbench incorporates multiple 
reasoning methods, including Auto Regressive Moving Average (ARMA) modeling, neural 
networks, and fuzzy logic systems, which previously required considerable effort to use.  
 
CBM Features Toolbox - ARL’s CBM Features Toolbox is a set of standard processing 
routines for machinery diagnostics and prognostics. The toolbox eliminates the need for users to 
code feature routines for each application and helps to standardize feature definition and 
implementation. It incorporates a mix of traditional and innovative features as well as all 
necessary signal preprocessing.  The toolbox provides a straightforward interface, is easily 
expandable for new features, offers simplistic input/output file structures, and allows batch 
processing of features and data. Figure 10 shows the inputs and outputs of the toolbox. 

 
Portable Data Acquisition Systems  - ARL developed several portable data acquisition systems 
to monitor machinery on-site and collect operational data for use in generating diagnostic and 
prognostic algorithms. These systems can monitor the performance of a variety of 
electromechanical systems under different operating requirements and in varying environments. 
The information obtained by these systems provides a dual benefit—it furthers CBM 
development and provides machinery owners with valuable diagnostic and prognostic data that is 
specific to their equipment and operating situation. 
 
 
Key Research Areas 
 
 Through a variety of research programs performed in partnership with government, 
industry, and educational organizations, ARL has made significant strides in developing 
prognostics for various sponsors and platforms. Some of the most significant areas of research 
are described below. 
 
Sensing, Modeling, and Reasoning Research – This effort focuses on developing technologies 
and methodologies to support consequence-driven sensing, modeling, and reasoning. It 
recognizes the hierarchical nature of failures and demands and responds with a vertically 
integrated approach that links material-level failure phenomena to platform-level effects. The 
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results of this effort—hardware, software, models, and algorithms—are applicable to both 
helicopter and shipboard platforms. 
 
CBM for Large Scale Equipment – This effort involves several NASA Ames Research Center 
wind tunnels. It focuses on providing an effective CBM system for the large equipment that is 
costly to repair and often impossible to replace. The program includes: building a highly flexible 
data acquisition system and fusion toolkit, isolating the causes of vibration, determining the most 
effective means of detecting vibrational changes related to operational degradation, using 
modeling to develop advanced reasoning schemes for collecting diagnostic/prognostic 
information and reducing false alerts, and tracking blade degradation on the National Full-Scale 
Aerodynamic Facility (NFAC), the largest wind tunnel in the world. 
 
Battery Diagnostics – ARL research on the Battery Test Bench has led to the development of a 
new method of online battery charge density sensing.  The new method represents a significant 
improvement in both effectiveness and efficiency over prior sensing technologies. A patent is 
pending on this new sensing technique, which can be applied to both battery diagnostics and 
prognostics. 
 
Torsional Vibration Studies – ARL determined that torsional vibration could be used to detect 
changes in a rotor blade’s natural frequency resulting from a crack or other defect. This research 
was based on the premise that excitation of the blades—by turbulence or other processes—
results in a measurable frequency shift in the torsional domain. These findings are applicable to a 
wide range of industries, including electric power generation; aircraft, spacecraft, and shipboard 
applications; and petrochemical and paper production. 
 
Advanced Sensors and Controls – This thrust focuses on the development of smart sensors and 
sensor technologies, along with the appropriate control architectures to implement health 
monitoring and other applications. 
 
Fluid System Diagnostics – ARL’s development of the lubrication system test bench has led to 
new model-based diagnostic approaches for fault detection based on fluid system diagnostics. 
Based on our research, we can characterize operational degradation and fault progressing by 
analyzing lubricant degradation, contamination, internally or externally generated debris, flow 
blockage, and leakage.  
 
Intelligent Component Health Monitoring – ARL leads the Machinery Health Monitoring 
Consortium in developing a multi-layer hierarchical architecture and implementing machinery 
health monitoring at the platform, system, and component levels. This hierarchical approach 
enables fast, accurate identification of faults, based on a more integrated picture of machinery 
health, and will result in more useful, more timely recommendations for action. ARL is 
developing technology to support “smart components” capable of performing local algorithmic 
processing at the component level.  
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Research Horizon 
 
 The collection of machinery failure data at laboratory and operational levels has enabled 
ARL to develop an “implementable” CBM knowledge base and an evolving prediction 
capability. The next step will involve bridging the scientific gap between material failure and 
functional capability prediction for decision support. Future success will rely on developing 
effective strategies for incorporating passive/active interrogation methods with failure and 
functional models and automated reasoning, as well as advances in low-power sensors, self-
calibrating sensors, and high performance sensors. Finally, by providing frameworks and linking 
the CBM knowledge with logistics and mission planning, ARL and its partners will provide a 
clear path to improved asset management and readiness.  
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Diesel-Enhanced MDTB

• Allows exploration of 

seeded/transitional faults in 

closely coupled reciprocating 

sources and rotary drive systems

• Has same basic driveline 

specification as MDTB

• Offers load-side power 

regeneration for high efficiency 

test operation

• Uses either a diesel engine or a 

motor drive as prime mover 

* Funded by DURIP, Dr. Thomas McKenna
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Lubrication System Testbed

• Oil Delivery Issues
– Mechanical faults

– Flow blockage

– System leakage

• Oil Quality Issues
– Degradation

– Fluid contamination

– Internal/External Debris

• Simulates pressure-fed 
lubrication system of gas turbine 
or transmission

• Pressure, mass flow, 
temperature, oil debris and 
contamination sensors

* Funded by ONR Code 331, Dr. Phillip Abraham
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Battery Prognostics Test Bench

State of charge, health and life 
models for:

– Lead Acid

– Nickel Cadmium

– Alkaline 

– Lithium 
Polycarbonate
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* Funded by ONR Code 331, Dr. Phillip Abraham

• Evaluate model-based 
diagnostics for primary and 
secondary batteries

• Patented impedance 
technique, temperature, 
heat flux voltage, current
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Electrical Generator Test Rig

• Scale model for 501-K34 
electrical generator

• Enable non-destructive 
– Stator short

– Diode failure
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Matlab® CBM Features Toolbox

Diagnostic features->
strong jump & correlation

Prognostic
Feature

• Toolkit provides:

– An objective process for 
evaluating features

– Rapid prototyping of 
new features

– An extensive set of 
calibrated algorithms for 
feature extraction
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Multisensor Data Fusion

• Leverages JDL data fusion process 
model

• Multisensor Fusion Toolkit 
– rapid algorithm prototyping

– MOP/MOE development

• Development of feature and decision-
level fusion algorithms
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Reasoning and Prognostics

• Comparison of neural network, 
fuzzy logic, expert, and hybrid  
systems

• Hybrid system combined the 
estimates to provide improved 
robustness

Gearbox Health Indications
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Handheld User Interfaces
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ARL PHM Research Areas

• Aircraft manufacturing

• Turbine manufacturing

• Ship manufacturing

• University-based research

• Power production (electric/nuclear)

• Sensors and control

• Human-interface technologies

• Mechanical and power systems

• Construction and land vehicle production

• Data and information technology
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Continuing Challenges

• Sensing Challenges

– Autonomous intelligent multisensor systems

– Self-powered, self-calibrating sensors with wireless communications

• Modeling and Fusion Challenges

– Physics-based models for failure phenomena and progression

– Prediction of macro-scale effects from micro-scale phenomena

– General theory of uncertainty and failure prediction

– Automated feature extraction/selection for processing sensor data

– Integration of non-commensurate sensor data

• Prognostics

– Need for calibrated, transitional data 

– Scaling laboratory-based models to fielded systems and platforms

– Continued evolution of prognostic theory and applications

(continued)
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Continuing Challenges (cont’d)

• Automated Reasoning Challenges
– Cognitive-based automated reasoning methods to mimic capability of 

expert mechanics

– Hierarchical hybrid methods incorporating physics-based models

– Integration of explicit and implicit knowledge and negative information

– MOPs and MOEs for data fusion and reasoning

• System Control and Resource Utilization Challenges
– Tasking and optimal use of 10N sensors

– Adaptive context-based sensing

– Feedback and control of load conditions to extend life span

• Evolution of CBM to asset readiness for intelligent mission planning
– Spanning the dimension from physics of failure to system capability and 

platform readiness 

– Translating mission profile demands to system loads and failure 
prognostics


